Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619977

RESUMO

A Gram-stain-negative, non-motile, and slightly halophilic alphaproteobacterium, designated strain EGI FJ00035T, was isolated from enrichment sediment samples of a saline lake in Xinjiang Uygur Autonomous Region, PR China. The taxonomic position of the isolate was determined using the polyphasic taxonomic and phylogenomic analyses. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain EGI FJ00035T formed a distinct clade with 'Chelativorans alearense' UJN715 and 'Chelativorans xinjiangense' lm93 with sequence similarities of 98.44 and 98.22 %, respectively, while sharing less than 96.7 % with other valid type strains. The novel isolate could be distinguished from other species of the genus Chelativorans by its distinct phenotypic, physiological, and genotypic characteristics. Optimal growth of strain EGI FJ00035T occurred on marine agar 2216 at pH 7.0 and 30 °C. The major respiratory quinone was Q-10, while the major fatty acids (>5 %) were C19 : 0 cyclo ω8c, summed feature 8 (C17 : 1 ω6c and/or C17 : 1 ω7c), C16 : 0, C18 : 0, and iso-C17 : 0. The detected polar lipids included diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminophospholipids, unidentified glycolipids, and an unidentified lipid. Based on its genome sequence, the G+C content of strain EGI FJ00035T was 63.2 mol%. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values of strain EGI FJ00035T against related members of the genus Chelativorans were below the thresholds for delineation of a novel species. According our polyphasic taxonomic data, strain EGI FJ00035T represents a new species of the genus Chelativorans, for which the name Chelativorans salis sp. nov. is proposed. The type strain of the proposed novel isolate is EGI FJ00035T (=KCTC 92251T=CGMCC 1.19480T).


Assuntos
Ácidos Graxos , Phyllobacteriaceae , Ácidos Graxos/química , Fosfolipídeos/química , Ubiquinona/química , Filogenia , RNA Ribossômico 16S/genética , Lagos/análise , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , China , Phyllobacteriaceae/genética
2.
Environ Sci Technol ; 58(6): 2859-2869, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289638

RESUMO

2,6-Dichlorobenzamide (BAM) is an omnipresent micropollutant in European groundwaters. Aminobacter niigataensis MSH1 is a prime candidate for biologically treating BAM-contaminated groundwater since this organism is capable of utilizing BAM as a carbon and energy source. However, detailed information on the BAM degradation kinetics by MSH1 at trace concentrations is lacking, while this knowledge is required for predicting and optimizing the degradation process. Contaminating assimilable organic carbon (AOC) in media makes the biodegradation experiment a mixed-substrate assay and hampers exploration of pollutant degradation at trace concentrations. In this study, we examined how the BAM concentration affects MSH1 growth and BAM substrate utilization kinetics in a AOC-restricted background to avoid mixed-substrate conditions. Conventional Monod kinetic models were unable to predict kinetic parameters at low concentrations from kinetics determined at high concentrations. Growth yields on BAM were concentration-dependent and decreased substantially at trace concentrations; i.e., growth of MSH1 diminished until undetectable levels at BAM concentrations below 217 µg-C/L. Nevertheless, BAM degradation continued. Decreasing growth yields at lower BAM concentrations might relate to physiological adaptations to low substrate availability or decreased expression of downstream steps of the BAM catabolic pathway beyond 2,6-dichlorobenzoic acid (2,6-DCBA) that ultimately leads to Krebs cycle intermediates for growth and energy conservation.


Assuntos
Benzamidas , Carbono , Phyllobacteriaceae , Biodegradação Ambiental , Benzamidas/metabolismo , Carbono/metabolismo
3.
Folia Microbiol (Praha) ; 69(1): 17-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038797

RESUMO

The family Phyllobacteriaceae is a heterogeneous assemblage of more than 146 species of bacteria assigned to its existing 18 genera. Phylogenetic analyses have shown great phylogenetic diversity and also suggested about incorrect classification of several species that need to be reassessed for their proper phylogenetic classification. However, almost 50% of the family members belong to the genus Mesorhizobium only, of which the majority are symbiotic nitrogen fixers associated with different legumes. Other major genera are Phyllobacterium, Nitratireductor, Aquamicrobium, and Aminobacter. Nitrogen-fixing, legume nodulating members are present in Aminobacter and Phyllobacterium as well. Aquamicrobium spp. can degrade environmental pollutants, like 2,4-dichlorophenol, 4-chloro-2-methylphenol, and 4-chlorophenol. Chelativorans, Pseudaminobacter, Aquibium, and Oricola are the other genera that contain multiple species having diverse metabolic capacities, the rest being single-membered genera isolated from varied environments. In addition, heavy metal and antibiotic resistance, chemolithoautotrophy, poly-ß-hydroxybutyrate storage, cellulase production, etc., are the other notable characteristics of some of the family members. In this report, we have comprehensively reviewed each of the species of the family Phyllobacteriaceae in their eco-physiological aspects and found that the family is rich with ecologically and metabolically highly diverse bacteria having great potential for human welfare and environmental clean-up.


Assuntos
Fabaceae , Phyllobacteriaceae , Humanos , Phyllobacteriaceae/genética , Filogenia , Bactérias/genética , Fabaceae/microbiologia , Nitrogênio/metabolismo , DNA Bacteriano/metabolismo , RNA Ribossômico 16S , Análise de Sequência de DNA
4.
Environ Res ; 245: 117980, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142731

RESUMO

N,N-dimethylformamide (DMF) is widely used in various industries, but its direct release into water poses high risks to human beings. Although a lot of DMF-degrading bacteria has been isolated, limited studies focus on the degradation preference among DMF and its analogues. In this study, an efficient DMF mineralization bacterium designated Aminobacter ciceronei DMFA1 was isolated from marine sediment. When exposed to a 0.2% DMF (∼1900 mg/L), strain DMFA1 exhibited a degradation efficiency of 100% within 4 days. The observed growth using formamide as the sole carbon source implied the possible DMF degradation pathway of strain DMFA1. Meanwhile,the strain DMFA1 possesses a broad-spectrum substrate degradation, which could effectively degraded 0.2% N,N-dimethylacetamide (DMAC) and N-methylformamide (NMF). Genomic analysis further confirmed the supposed pathway through annotating the genes encoding N, N-dimethylformamidase (DMFase), formamidase, and formate dehydrogenase. The existence of sole DMFase indicating its substrate specificity controlled the preference of DMAc of strain DMFA1. By integrating multiple sequence alignment, homology modeling and molecular docking, the preference of the DMFase in strain DMFA1 towards DMAc are related to: 1) Mutations in key active site residues; 2) the absence of small subunit; and 3) no energy barrier for substrates entering the active site.


Assuntos
Dimetilformamida , Phyllobacteriaceae , Humanos , Dimetilformamida/metabolismo , Especificidade por Substrato , Simulação de Acoplamento Molecular
5.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861397

RESUMO

A Gram-stain-negative, aerobic, rod-shaped, nonmotile and yellow-pigmented bacterium designated E7-10T was isolated from a bleached scleractinian coral Porites lutea. Strain E7-10T grew with 1.0-8.0 % (w/v) NaCl (optimum, 4.0 %), at 18-41 °C (optimum, 28 °C) and at pH 6.0-10.0 (optimum, pH 8.0). Phylogenetic analysis using 16S rRNA gene sequences revealed that E7-10T formed a lineage within the genus Hoeflea, but it was distinct from the closest species 'Hoeflea prorocentri' PM5-8T, showing 98.01 % sequence similarity. The predominant cellular fatty acids of E7-10T were summed feature 8 (26.7 %), C18 : 1 ω7c 11-methyl (26.2 %), C16 : 0 (20.8 %) and C19 : 0 cyclo ω8c (17.9 %). The major respiratory quinone was Q-10. The polar lipids mainly comprised phosphatidylethanolamine, two glycolipids and five phospholipids. The genome size of E7-10T was 5.58 Mb with G+C content 60.27 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between the genomes of strains E7-10T and PM5-8T were 19.50 and 75.95 %, respectively, which were both below the defined cutoff values (70 % and 95-96 %, respectively) for species delimitation. Thus, strain E7-10T represents a novel species within the genus Hoeflea, for which the name Hoeflea poritis sp. nov. is proposed. The type strain is E7-10T (=JCM 35852T=MCCC 1K08229T).


Assuntos
Antozoários , Phyllobacteriaceae , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ubiquinona/química , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-37755148

RESUMO

Two Gram-negative, moderately halophilic, and motile rod bacteria, strains G2-23T and J2-29T, showing catalase- and oxidase-positive activities were isolated from species of the marine algae Chondrus and Ulva, respectively. Both strains optimally grew at 30 °C, pH 7.0 and 2% (w/v) NaCl. Both strains contained ubiquinone-10 as the sole isoprenoid quinone. Strain G2-23T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c/ω6c) as major cellular fatty acids, and phosphatidylethanolamine (PE), phosphatidyl-N-monomethylethanolamine (PME), phosphatidylglycerol (PG), diphosphatidylglycerol and an unidentified phospholipid (PL) as major polar lipids. Strain J2-29T contained summed feature 8, C18 : 1 ω7c 11-methyl and C16 : 0 as major cellular fatty acids and PE, PME, PG and PL as major polar lipids. The genomic DNA G+C contents of strains G2-23T and J2-29T were 59.5 and 62.2 mol%, respectively. Both strains shared 97.9 % 16S rRNA gene sequence similarity, 79.8 % average nucleotide identity (ANI) and 22.8 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic and phylogenomic analyses by 16S rRNA gene and genome sequences, respectively, revealed that strains G2-23T and J2-29T formed different phylogenic lineages within the genus Hoeflea. ANI and dDDH values between strains G2-23T and J2-29T and other Hoeflea type strains were less than 79.0 and 22.1% and 80.5 and 23.3 %, respectively, suggesting that they represent novel species of the genus Hoeflea. In summary, based on their phenotypic, chemotaxonomic and molecular properties, strains G2-23T and J2-29T represent two different novel species of the genus Hoeflea, for which the names Hoeflea algicola sp. nov. (G2-23T=KACC 22714T=JCM 35548T) and Hoeflea ulvae sp. nov. (J2-29T=KACC 22715T=JCM 35549T), respectively, are proposed.


Assuntos
Gammaproteobacteria , Phyllobacteriaceae , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos , Nucleotídeos
7.
Artigo em Inglês | MEDLINE | ID: mdl-37000635

RESUMO

We isolated a paraffin oil-degrading bacterial strain from a mixture of oil-based drill cutting and paddy soil, and characterized the strain using a polyphasic approach. The Gram-positive, aerobic, rod-shaped and non-spore-forming strain (SCAU 2101T) grew optimally at 50 °C, pH 7.0 and 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that the strain represented a distinct clade in the genus Chelativorans, neighbouring Chelativorans intermedius LMG 28482T (97.1 %). The genome size and DNA G+C content of the strain were 3 969 430 bp and 63.1 mol%, respectively. Whole genome based phylogenomic analyses showed that the average nucleotide identity and digital DNA-DNA hybridization values between strain SCAU 2101T and C. intermedius LMG 28482T were 77.5 and 21.2 %, respectively. The major respiratory quinone was Q-10. The dominant fatty acids were C19 : 0 cyclo ω8c (50.6 %), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 22.5 %) and C18 : 0 (13.8 %). The polar lipids of the strain included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. Based on the results, strain SCAU 2101T was considered to represent a novel species in the genus Chelativorans, for which the name Chelativorans petroleitrophicus sp. nov. is proposed. The type strain is SCAU 2101T (= CCTCC AB 2021125T=KCTC 92067T).


Assuntos
Ácidos Graxos , Phyllobacteriaceae , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Ubiquinona/química , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Phyllobacteriaceae/genética
8.
Methods Enzymol ; 668: 327-347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35589200

RESUMO

Reductive dehalogenases provide a possible route to the biotechnological remediation of widespread anthropogenic environmental organohalide contamination. These bacterial enzymes employ cobalamin and an internal electron transfer chain of two [4Fe-4S] clusters to remove halide ions from organohalides, leaving an organic molecule more amenable to further transformations. Detailed protocols for the cloning, heterologous expression, purification, crystallization and characterization of the catabolic dehalogenase from Nitratireductor pacificus pht-3B (NpRdhA) are presented, together with insight into enzyme turnover, substrate selectivity and the use of electron paramagnetic resonance (EPR) spectroscopy as an active site probe.


Assuntos
Oxirredutases , Phyllobacteriaceae , Espectroscopia de Ressonância de Spin Eletrônica , Halogenação , Oxirredutases/química , Phyllobacteriaceae/metabolismo , Vitamina B 12/metabolismo
9.
Environ Sci Pollut Res Int ; 29(39): 59915-59929, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35397726

RESUMO

This research reports the use of biodegradable and flexible composites for the removal of the 2,6-dichlorobenzamide (BAM) pesticide from drinking water. Rice paper (a biodegradable substrate) and Ag/BaMoO4 (MOBA) nanoparticles were employed to fabricate these composites. The SEM images showed that the MOBA nanoparticles with sizes of 300-800 nm decorated the surface of the biodegradable substrate and formed porous agglomerates, which have sizes of 1-3 µm. The MOBA powders were dispersed in drinking water polluted with BAM and were exposed to 4 h of UV-VIS irradiation, producing a maximum degradation of 82% for the BAM. Moreover, the flexible and biodegradable rice/MOBA composite produced a maximum removal percentage of 95% for the BAM. Also, we studied the effect of pH of the initial solution utilizing both powders and composites. From here, we found that a pH of 10 leads to a complete degradation of BAM after 4h, while a pH of 3 degraded only 37-47% of BAM for the same reaction time. According to the scavenger experiments, the •OH radical and the h+ were the main oxidizing agents for the BAM. Overall, the biodegradable photocatalytic composites are a reliable and a low-cost alternative to eliminate pesticides from the drinking water and can find application in water purification processes.


Assuntos
Água Potável , Nanopartículas , Oryza , Praguicidas , Phyllobacteriaceae , Benzamidas , Oryza/metabolismo , Praguicidas/metabolismo , Phyllobacteriaceae/metabolismo , Pós
10.
Environ Sci Technol ; 56(7): 4050-4061, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263099

RESUMO

Compound-specific isotope analysis (CSIA) can reveal mass-transfer limitations during biodegradation of organic pollutants by enabling the detection of masked isotope fractionation. Here, we applied CSIA to monitor the adaptive response of bacterial degradation in inoculated sediment to low contaminant concentrations over time. We characterized Aminobacter sp. MSH1 activity in a flow-through sediment tank in response to a transient supply of elevated 2,6-dichlorobenzamide (BAM) concentrations as a priming strategy and took advantage of an inadvertent intermittence to investigate the effect of short-term flow fluctuations. Priming and flow fluctuations yielded improved biodegradation performance and increased biodegradation capacity, as evaluated from bacterial activity and residual concentration time series. However, changes in isotope ratios in space and over time evidenced that mass transfer became increasingly limiting for degradation of BAM at low concentrations under such stimulated conditions, and that activity decreased further due to bacterial adaptation at low BAM (µg/L) levels. Isotope ratios, in conjunction with residual substrate concentrations, therefore helped identifying underlying limitations of biodegradation in such a stimulated system, offering important insight for future optimization of remediation schemes.


Assuntos
Água Subterrânea , Phyllobacteriaceae , Biodegradação Ambiental , Fracionamento Químico , Água Subterrânea/química , Isótopos , Phyllobacteriaceae/metabolismo
11.
Environ Sci Technol ; 56(2): 1352-1364, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34982540

RESUMO

Bioaugmentation often involves an invasion process requiring the establishment and activity of a foreign microbe in the resident community of the target environment. Interactions with resident micro-organisms, either antagonistic or cooperative, are believed to impact invasion. However, few studies have examined the variability of interactions between an invader and resident species of its target environment, and none of them considered a bioremediation context. Aminobacter sp. MSH1 mineralizing the groundwater micropollutant 2,6-dichlorobenzamide (BAM), is proposed for bioaugmentation of sand filters used in drinking water production to avert BAM contamination. We examined the nature of the interactions between MSH1 and 13 sand filter resident bacteria in dual and triple species assemblies in sand microcosms. The residents affected MSH1-mediated BAM mineralization without always impacting MSH1 cell densities, indicating effects on cell physiology rather than on cell number. Exploitative competition explained most of the effects (70%), but indications of interference competition were also found. Two residents improved BAM mineralization in dual species assemblies, apparently in a mutual cooperation, and overruled negative effects by others in triple species systems. The results suggest that sand filter communities contain species that increase MSH1 fitness. This opens doors for assisting bioaugmentation through co-inoculation with "helper" bacteria originating from and adapted to the target environment.


Assuntos
Água Subterrânea , Phyllobacteriaceae , Purificação da Água , Bactérias , Benzamidas , Biodegradação Ambiental , Purificação da Água/métodos
12.
Front Immunol ; 12: 748447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671363

RESUMO

Objective: To investigate the Interaction between chronic endometritis (CE) caused endometrial microbiota disorder and endometrial immune environment change in recurrent implantation failure (RIF). Method: Transcriptome sequencing analysis of the endometrial of 112 patients was preform by using High-Throughput Sequencing. The endometrial microbiota of 43 patients was analyzed by using 16s rRNA sequencing technology. Result: In host endometrium, CD4 T cell and macrophage exhibited significant differences abundance between CE and non-CE patients. The enrichment analysis indicated differentially expressed genes mainly enriched in immune-related functional terms. Phyllobacterium and Sphingomonas were significantly high infiltration in CE patients, and active in pathways related to carbohydrate metabolism and/or fat metabolism. The increased synthesis of lipopolysaccharide, an important immunomodulator, was the result of microbial disorders in the endometrium. Conclusion: The composition of endometrial microorganisms in CE and non-CE patients were significantly different. Phyllobacterium and Sphingomonas mainly regulated immune cells by interfering with the process of carbohydrate metabolism and/or fat metabolism in the endometrium. CE endometrial microorganisms might regulate Th17 response and the ratio of Th1 to Th17 through lipopolysaccharide (LPS).


Assuntos
Aborto Habitual/microbiologia , Endometrite/microbiologia , Endométrio/microbiologia , Transcriptoma , Aborto Habitual/imunologia , Metabolismo dos Carboidratos , Implantação do Embrião , Transferência Embrionária , Endometrite/imunologia , Endometrite/metabolismo , Endométrio/imunologia , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Lipopolissacarídeos/imunologia , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , Phyllobacteriaceae/fisiologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA-Seq , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/fisiologia , Células Th1/imunologia , Células Th17/imunologia
13.
Antonie Van Leeuwenhoek ; 114(11): 1925-1934, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34491486

RESUMO

A novel Gram-stain negative, asporogenous, slimy, rod-shaped, non-motile bacterium ROOL2T was isolated from the root samples collected from a rice field located in Ilsan, South Korea. Phylogenetic analysis of the 16S rRNA sequence showed 96.5% similarity to Tianweitania sediminis Z8T followed by species of genera Mesorhizobium (96.4-95.6%), Aquabacterium (95.9-95.7%), Rhizobium (95.8%) and Ochrobactrum (95.6%). Strain ROOL2T grew optimally at 30 °C in the presence of 1-6% (w/v) NaCl and at pH 7.5. The major respiratory quinone was ubiquinone-10 and the major cellular fatty acids were C18:1ω7c, summed feature 4 (comprising iso-C17:1 I and/or anteiso-C17:1 B) and summed feature 8 (comprising C18:1ω6c and/or C18:1ω7c). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylglycerol, one unidentified aminolipid and two unidentified lipids. The assembled draft genome of strain ROOL2T had 28 contigs with N50 value of 656,326 nt, total length of 4,894,583 bp and a DNA G + C content of 61.5%. The average amino acid identity (AAI) values of strain ROOL2T against the genomes of related members belonging to the same family were below 68% and the ANI and dDDH values between the strain ROOL2T and the type strains of phylogenetically related species were 61.8-76.3% and 19.4-21.1%, respectively. Strain ROOL2T only produces carotenoid-type pigment when grown on LB agar and slime on R2A agar. In the presence of tryptophan, strain ROOL2T produced indole acetic acid (IAA), a phytohormone in plant growth and development. Gene clusters for indole-3-glycerol phosphatase and tryptophan synthase were found in the genome of strain ROOL2T. The genotypic and phenotypic characteristics indicated that strain ROOL2T represents a novel genus belonging the family Phyllobacteriaceae, for which the name Oryzicola mucosus gen. nov., sp. nov. is proposed. The type strain is ROOL2T (KCTC 82711 T = NBRC 114717 T).


Assuntos
Oryza , Phyllobacteriaceae , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Phyllobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA
14.
Sci Rep ; 11(1): 18943, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556718

RESUMO

Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells. Biological treatment with MSH1 is considered a potential sustainable alternative to remediate BAM-contamination in drinking water production. We present the complete genome of MSH1, which was determined independently in two institutes at Aarhus University and KU Leuven. Divergences were observed between the two genomes, i.e. one of them lacked four plasmids compared to the other. Besides the circular chromosome and the two previously described plasmids involved in BAM catabolism, pBAM1 and pBAM2, the genome of MSH1 contained two megaplasmids and three smaller plasmids. The MSH1 substrain from KU Leuven showed a reduced genome lacking a megaplasmid and three smaller plasmids and was designated substrain MK1, whereas the Aarhus variant with all plasmids was designated substrain DK1. A plasmid stability experiment indicate that substrain DK1 may have a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids per cell. Finally, strain MSH1 is reassigned as Aminobacter niigataensis MSH1.


Assuntos
Benzamidas/metabolismo , Água Subterrânea/química , Phyllobacteriaceae/genética , Purificação da Água/métodos , Benzamidas/toxicidade , Biodegradação Ambiental , Genoma Bacteriano , Herbicidas/metabolismo , Herbicidas/toxicidade , Nitrilas/metabolismo , Nitrilas/toxicidade , Phyllobacteriaceae/metabolismo , Filogenia , Plasmídeos/genética , Poliploidia , Análise de Sequência de DNA
15.
Curr Microbiol ; 78(10): 3798-3803, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34387738

RESUMO

A novel Gram-stain-negative, rod-shaped, strictly aerobic, non-motile bacterium, designated strain cd-1T, was isolated from a farmland soil applied with amino acid fertilizer in Zhengzhou, Henan province, China. The optimum growth of strain cd-1T occurred at 30 °C, pH 7.0 in Luria-Bertani (LB) broth without NaCl supplement. Phylogenetic analysis based on 16S rRNA gene sequences indicated that cd-1T is member of the genus Aquamicrobium, and formed a separate branch with Aquamicrobium aerolatum DSM 21857T (96.5%) and Aquamicrobium soli KCTC 52165T (95.7%). The draft genome sequencing revealed a DNA G + C content of 59.2 mol% and Q-10 was the predominant respiratory quinone. The major cellular fatty acids were identified as C18:1 ω7c (35.8%), C19:0 cyclo ω8c (32.1%), and C18:1 ω7c 11-methyl (5.2%). The polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylmonomethylethanolamine. Average nucleotide identity (ANI) and the digital DNA-DNA hybridizations (dDDH) for draft genomes between strain cd-1T and KCTC 52165T were 71.0% and 19.9%, respectively, the values for strain cd-1T and DSM 21857T were 73.4% and 20.6%. Based on the physiological and biochemical characteristics, phylogenetic and chemotaxonomic analysis, strain cd-1T is considered to represent a novel species of the genus Aquamicrobium, for which the name Aquamicrobium zhengzhouense sp. nov. is proposed. The type strain is cd-1T (= KCTC 82182T = CCTCC M 2018904T).


Assuntos
Fertilizantes , Solo , Aminoácidos , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Fazendas , Ácidos Graxos/análise , Fosfolipídeos/análise , Phyllobacteriaceae , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Syst Appl Microbiol ; 44(3): 126199, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33848814

RESUMO

The monotypic carboxydophilic genus Carbophilus has recently been transferred to the genus Aminobacter within the family Phyllobacteriaceae, and Carbophilus carboxidus was renamed Aminobacter carboxidus (comb. nov.) [Hördt et al. 2020]. Due to the poor resolution of the 16S rRNA gene-based phylogeny, an extensive phylogenomic analysis of the family Phyllobacteriaceae was conducted, with particular focus on the genus Aminobacter. Whole genome-based analyses of Phyllobacteriaceae type strains provided evidenced that the genus Aminobacter forms a monophyletic cluster, clearly demarcated from all other members of the family. Close relatedness between A. carboxidus DSM 1086T and A. lissarensis DSM 17454T was inferred from core proteome phylogeny, shared gene content, and multilocus sequence analyses. ANI and GGDC provided genetic similarity values above the species demarcating threshold for these two type strains. Metabolic profiling and cell morphology analysis corroborated the phenotypic identity between A. carboxidus DSM 1086T and A. lissarensis DSM 17454T. Search for the presence of carbon monoxide dehydrogenase (CODH) genes in Phyllobacteriaceae genomes revealed that the form II CODH is widespread in the family, whereas form I CODH was detected in few Mesorhizobium type strains, and in both A. carboxidus DSM 1086T and A. lissarensis DSM 17454T. Results of phylogenomic, chemotaxonomic, and morphological investigations, combined with the presence of similarly arranged CODH genes, indicate that A. carboxidus DSM 1086T and A. lissarensis DSM 17454T are distinct strains of the same species. Hence A. carboxidus is a later subjective heterotypic synonym of A. lissarensis.


Assuntos
Monóxido de Carbono , Phyllobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Rhizobiaceae , Análise de Sequência de DNA
17.
Curr Microbiol ; 78(4): 1656-1661, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33651188

RESUMO

A novel Gram-strain-negative, rod-shaped, non-flagellated, non-gliding, beige-pigmented and aerobic bacterium, designated strain UJN715T, was isolated from rhizosphere soil of Alhagi sparsifolia obtained from Alear city, located in Xinjiang province, PR China. Growth optimally occurred at 37 °C, pH 6.5-7.5, and 0-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain UJN715T belonged to the genus Chelativorans, with the highest sequence similarity to Chelativorans multitrophicus DSM 9103 T (97.7%). Genome sequencing revealed a genome size of 5 702 301 bp and a G + C content of 64.1 mol%. The ANI, POCP and the dDDH between strain UJN715T and C. multitrophicus DSM 9103 T were 76.2%, 49.3%, and 20.5%, respectively. The prediction result of secondary metabolites based on genome showed that the strain UJN715T contained one cluster of ectoine production, one cluster of non-ribosomal peptide synthetase (NRPS), one cluster of type I polyketide synthases (TIPKS), one cluster of bacteriocin, one cluster of TfuA-related, one cluster of N-acetylglutaminylglutamine amide (NAGGN) production, one cluster of terpene production, two clusters of homoserine lactone (Hserlactone) production. The major respiratory quinone was Q-10. The major fatty acids were iso-C17:0, C18:0 and C19:0 cyclo ω8c and its polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phospholipids, unknown lipids, diphosphatidylglycerol, aminoglycolipid, unidentified aminophospholipids. On the basis of these data, strain UJN715T is considered to represent a novel species of the genus Chelativorans, for which the name Chelativorans alearense sp. nov. is proposed. The type strain is UJN715T (= KCTC 72856T = CCTCC AB2019378T).


Assuntos
Fosfolipídeos , Solo , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Phyllobacteriaceae , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Arch Microbiol ; 203(5): 2647-2652, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710380

RESUMO

A bacterial strain, BT25T, was isolated from soil in Korea. The bacterial cells were Gram-negative and rod-shaped. Phylogenetic analysis using 16S rRNA gene sequences showed that the BT25T strain was related to the genus Phyllobacterium. BT25T was 96.6 and 96.5% similar to Phyllobacterium brassicacearum STM 196T and Phyllobacterium myrsinacearum DSM 5892T, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between BT25T and the two closest phylogenetic neighbors were calculated to be 78.5 and 77.7, 21.1 and 21.2%, respectively. The major cellular fatty acids were summed feature 8 (C18:1 ω7c/C18:1 ω6c) (29.3%), cyclo-C19:0 ω8c (27.5%), and C16:0 (16.5%). The BT25T strain had menaquinone Q-10 as the predominant quinone, as well as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylcholine as the major polar lipids. Based on the phenotypic, phylogenetic, and chemotaxonomic data, the BT25T strain was classified as a novel Phyllobacterium species. The name Phyllobacterium pellucidum sp. nov. was proposed. The type strain is BT25T (= KCTC 62765T = NBRC 114381T).


Assuntos
Phyllobacteriaceae/isolamento & purificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes de RNAr , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Phyllobacteriaceae/química , Phyllobacteriaceae/classificação , Phyllobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
19.
Arch Microbiol ; 203(2): 693-699, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33037888

RESUMO

A novel Gram-strain-negative, beige-pigmented, aerobic, rod-shaped, non-flagellated and non-gliding bacterium, designated strain lm93T, was isolated from rhizosphere soil of Alhagi sparsifolia obtained from Alar city, located in Xinjiang province, China. Growth optimally occurred at 30 °C, pH 6.5-7.5, and 0-2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain lm93T belonged to the genus Chelativorans, with highest sequence similarity to Chelativorans multitrophicus DSM 9103T (96.9%). Genome sequencing revealed a genome size of 5 689 708 bp and a G + C content of 64.3 mol%. The ANI, POCP and the dDDH between strain lm93T and C. multitrophicus DSM 9103T were 76.4%, 54.8% and 0.8%, respectively. The prediction result of secondary metabolites based on genome showed that the strain lm93T contained one cluster of bacteriocin, one cluster of terpene production, two clusters of ectoine production, one cluster of non-ribosomal peptide synthetase, one cluster of type I polyketide synthases, three clusters of homoserine lactone production, one cluster of N-acetylglutaminylglutamine amide production and one cluster of phosphonate production. The major respiratory quinone was Q-10. The major fatty acids were C19:0 cyclo ω8c, iso-C17:0 and summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and its polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two unidentified aminophospholipids, aminoglycolipid, three unknown lipids and diphosphatidylglycerol. On the basis of these data, strain lm93T is considered to represent a novel species of the genus Chelativorans, for which the name Chelativorans xinjiangense sp. nov. is proposed. The type strain is lm93T (= KCTC 72857T = CCTCC AB2019376T).


Assuntos
Phyllobacteriaceae/classificação , Microbiologia do Solo , Composição de Bases , China , Fabaceae/microbiologia , Ácidos Graxos/análise , Fosfolipídeos/química , Phyllobacteriaceae/química , Phyllobacteriaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Especificidade da Espécie
20.
J Appl Microbiol ; 130(5): 1571-1581, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33030814

RESUMO

AIMS: This study evaluates flonicamid biotransformation ability of Aminobacter sp. CGMCC 1.17253 and the enzyme catalytic mechanism involved. METHODS AND RESULTS: Flonicamid transformed by resting cells of Aminobacter sp. CGMCC 1.17253 was carried out. Aminobacter sp. CGMCC 1.17253 converts flonicamid into N-(4-trifluoromethylnicotinoyl) glycinamide (TFNG-AM). Aminobacter sp. CGMCC 1.17253 transforms 31·1% of the flonicamid in a 200 mg l-1 conversion solution in 96 h. Aminobacter sp. CGMCC 1.17253 was inoculated in soil, and 72·1% of flonicamid with a concentration of 0·21 µmol g-1 was transformed in 9 days. The recombinant Escherichia coli expressing Aminobacter sp. CGMCC 1.17253 nitrile hydratase (NHase) and purified NHase were tested for the flonicamid transformation ability, both of them acquired the ability to transform flonicamid into TFNG-AM. CONCLUSIONS: Aminobacter sp. CGMCC 1.17253 transforms flonicamid into TFNG-AM via hydration pathway mediated by cobalt-containing NHase. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report that bacteria of genus Aminobacter has flonicamid-transforming ability. This study enhances our understanding of flonicamid-degrading mechanism. Aminobacter sp. CGMCC 1.17253 has the potential for bioremediation of flonicamid pollution.


Assuntos
Hidroliases/metabolismo , Inseticidas/metabolismo , Niacinamida/análogos & derivados , Phyllobacteriaceae/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biotransformação , Hidroliases/genética , Hidroliases/isolamento & purificação , Niacinamida/metabolismo , Phyllobacteriaceae/enzimologia , Phyllobacteriaceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...